
The Rationale of Distributed Rendering Using OpenGLl
in a Parallel CFD Environment

Dr. Michael L. Stokes2,
Dr. Ming-Hing Shih3

ABSTRACT,
The advent of parallel and distributed processing has lead researchers to seek
new and innovative approaches to visualization of large memory, time depen-
dent problems such as those encountered in Computational Fluid Dynam-
ic(CFD) applications. The current approach uses a concept whereby graphic
calls can be issued at remote sites in a distributed parallel environment and ap-
pear within a single window on a workstation. This approach eliminates the
need for explicit data migration to a centralized site for purposes of visualiza-
tion. This paper describes a prototype implementation of a distributed GFD
simulation system using the concept of distributed rendering. The rationale of
this design is compared to an approach in use at NASA Ames which encapsu-
lates the graphics entities into extracts[l.] which are then transferred to a re-
mote client process and rendered locally.

Introduction
Recent technical advances in and availability of parallel computer architecture has spurned much
development with the CFD community. As a result of more available memory, simulation sizes can
routinely accommodate four million points or more. Since most currently available visualization
software packages such as FAST[2.], and PLOT3D[3.] rely only on local memory, the entire domain
of interest must fit within one computer memory image, a feat difficult for even the most advanced
large memory workstation. This obviously restricts the researcher to observe only a subset of the
domain at any one time.
Since the availability of clustered workstations is often a scheduled resource, the researcher must
make optimal use of the time window allotted. Theresearcher no longer has the option of submitting
a long running job requiring the use of many processors, just to find out that there Was a small error
in boundary or run-time parameters that invalidated the results of the job. To minimize waste in
computational resource, it was necessary to monitor the early development of the fluid field to vali-
date boundary conditions and run-time parameters, correct inputs, then quickly get the job back into
queue. To facilitate the management and transport of data that would have to be managed, a vastly
different model than the current monolithic model would be required.
This work is also of interest to provide visualization in a object based simulation environment which
is currently under investigation at the Engineering Research CentermRC) at Mississippi State Uni-
versity. In this environment, objects such as computational grids are distributed on remote proces-
sors using CORBA(Common Object Request Broker Architecture[Lt.]). In an object oriented envi-
ronment, the appearance of an object on the display is defined within the definition of the object
1. This wak was supported by the NASA grant NAG 2-82. NASA Ames Research Center, Kristina D. Mecili
contract monitor.
2. Re& Faculty member Mississippi State UniversityDISF Engineering Research Center
3. Past Doctoral position Mississippi State UniversityDISF Engineering Research Center

1

itself, typically a drawing routine or method defined by the object. However, if this routine is
executed on a remote processor, the mechanism it uses must be able to display the results on a remote
display. The current method would provide such a capability and greatly simplify the problem of
coupling distributed processing and distributed visualization.

For a Cm, simulation system, a critical design goal was that the visualization component must be
as non-obtrusive as possible to the performance and operation of the parallel system. This translates
into the requirement that the performance of the system riot be seriously degraded as a result of the
visualization, and that the visualization system be “detachable” from the system when the visualiza-
tion was not needed. Similarly, it would be an advantage if the visualization could be “attached”
to a running process to facilitate diagnostics if the temporal residual of the field convergence was
large or misunderstood.

The current model was derived on the basis that processing should occur on the processor that con-
tains the data. This is a simple extension of the object-oriented concept of domain decomposition
in which each processor is mapped to a computational sub-domain and is responsible for all proces-
sing on that sub-domain, including visualization. X Windows, for example, provides some insight
as to how this could work by its ability to have a local process assign it’s output to a remote display.
In the current model, however, we require that multiple remote processes map their output to a single
window. While not currently exploited in many applications, X Windows does provide this capabili-
ty in that the X Server considers the screen and pinmap as sharable resources and thus allows pro-
cesses on remote computers to use these as drawables. On the UNIX operating system, OpenGL
is supported through extensions to the X Window protocol using similar concepts that will discussed
in a following section.

Architecture of the Field Solver
The field solver chosen for this work was the 3D structured WARC[S.] Navier-Stokes solver devel-
oped originally at AEDC, and now maintained by AFDC and NASA Lewis. This code was chosen
because it was publicly available(distributi0n C) and because it supported multi-block operation.
Though this version did not support parallelization, it was reasoned that the conversion would be
straight-forward due to its support for out of memory multi-block operation, as was indeed the case.
To make the parallelization as general as possible and thus keep portability high, PW[6.] was cho-
sen as the mechanism by which information was exchanged between the various blocks. This chose
allows everything from personal computers to supercomputers be used as remote processors in the
parallel system.

The main program of the WARC code was slightly modified to facilitate use of shared memory for
use by the visualization process. This was simplified in that the NPARC code allocates a large work
array (in FORTRAN) from which addresses are assigned to sub-arrays through SUBROUTINE
argument calls. The array declaration was replaced by a call to a small C routine that created a shared
memory whose address was then stored in a POINTER. This memory is then accessible to both
the CFD solver and the visualization process. However, both processes must exercise caution that
one process does not attempt to read an address that is currently being written by the other pro-
cess(which usually causes both tasks to abort). To prevent this, IPC semaphores were created along
with a small set of C routines callable from FORTRAN which protect critical regions of the code
from ill wanted access from multiple processes running on the same processor.

Architecture of Visualization

2

To support visualization, the solver process on each remote processor creates a child process that
is responsible for the visualization on the sub-domain. To facilitate the sharing of information be-
tween the solver(parent) process and the visualization(child) process, the IPC (Inter-Process Com-
munication) library was used to provide shared memury as well as semaphores to control read and
write access to the shared memory. This design has several salient features: Since memory is shared,
the overhead of moving information between the solver and visualization processes is minimized
and requires only one data image exist on that processor. Secondly, since the visualization is con-
tained in a separate process, the memory taken up by that process disappears as soon as the process
is no longer needed. Similarly, this architecture allows the visualization process to be attached to
a running simulation to monitor the on-going process. This process is illustrated in the following
figure.

CPU 1 CPU 0

I Display

Se erProcess

~

I ... I I
GLX

Figure 1. Architecture of the Simulatioflisualization System using OpenGL

In addition to providing a mechanism for remote rendering, a way was needed to communicate textu-
al information between the server process and each client process. For example, what portion of
each sub-domain does the user wish to see? Does the user wish to see velocity vectors or iso-sur-
faces of pressure? Each sub-domain creates it own separate window on the display for-the purpose
of extracting input information from the user. This information is feed straight back to the remote
client. Early experimentation relied on textual information being passed to each field solver process
which stored the information in shared memory. The shared memory was read by the visualization
process when an expose event was received from the server process(this is discussed in more detail
in the following section). This technique was abandoned because it required that the solver process
be involved in the role of visualization, which violated a fundamental design goal.
With the process management in mind, the details of the graphics process will be explored in some
detail.

Characterization of the OpenGL Library
OpenGL[7.] provides user control of the specifkation of such parameters as transformation ma-
trices, lighting and fog coefficients, anti-aliasing methods, pixel operations, and others. It does not

3

provide a format method for modeling the geometry of objects within the definition of OpenGL, thus
it is not provide a descriptive defiition. Instead, object definitions come from an ordered set of
vertex and polygon calls which when combined with other calls that specify vertex color values or
indeces, surface normals, and other attributes, defines how an object is rendered.

The execution model used under OpenGL, analogous to that of the X Window System, is character-
ized as client-server where an application(client) issues commands interpreted and processed by
OpenGL(seryer). The current implementation of OpenGL under the UNM derivative SGI operat-
ing system IRMis integrated with the XllR5 serve8 through the GLX extension. The server may
or may not operate on the same computer as a client, thus making OpenGL somewhat network trans-
parent. The connection between the client and the server is represented in a GL context , each of
which contains a unique rendering state within the server. With but a few exceptions, all of the con-
text is stored on the server, and not the client. In effect, client side graphics calls are merely shuttled
to the server for processin$.
OpenGL supports both immediate mode md display list based rendering. Display lists are basically
drawing instructions which are tokenized and cached, and indexed by a single integer identifier. A
common use of the display list is to store graphic objects which will be drawn many times without
change. Display Lists provide a convenient handle to graphic objects and eliminate the computation-
al overhead of recalculation for complex objects. Display Lists play an another important role in
distributed rendering in that display lists are cached on the server and therefore incur no penalty in
terms of network bandwidth for local redraws on the server. However, the use of display lists incur
a penalty of additional memory management on the server, therefore the chose of which mode to
use must be tempered by the requirements of the application. Fortunately, OpenGL provides both
mechanisms, and indeed, both methods may be appropriate within a single application.

To illustrate the sequence of events to creating a shared window, first a process is created on the
workstation that sponsors the shared window. This process shall be referred to as the server process
(See Figure 1). For client processes to share this window, it is only necessary for the remote process
to know the name of the workstation that contains the shared window, and the ID of the window(or
pixmp) that is to be shared. In OpenGL, the same information is used with the exception that the
window ID is used to create a GLXConte.xt(via the XVisualInfo structure). Afterward, any OpenGL
rendering calls made by any of the client processes will be observed in the shared window. Of
course, to render meaningful graphics, these events and resources must be synch;.onized between
the server proms and the client processes.

The GL context, being unique for each connection to the server, maintains separate Projection P
and Model-view Mv matrices(actually a matrix stack), among other resources. Classically, P is
used to defiie the transformation from world coordinates into screen coordinates, and MV is used
to transform from object space to the world coordinate system. P is constant during the construction
of a scene and is necessary for all objects to be drawn in the proper relative position to each other
on the display. Since each context can contain a non-unique P, some method is needed to synchro-
nize P between each remote client process. For the current work, this is accomplished by defining
a new X Window Property on the shared window called glXProjectionMatrix. Only the server pro-
cess by convention is able to define P. This is done by establishing an X Property on the shared win-
4. OpenGL has also been implemented under Windows 3.1 and Widows NT using the Microsoft Widows
APL
5. OpenGL also supports the notion of direct rendering to the graphics hardware, thereby providing a perfor-
mance advantage, but is implementation dependent and not used in the CWLent work.

4

dow which contains the P. P is altered by the serverprocess calling XChangeProperty which in turn
generates PropertyNotih events in each client. Each client responds by calling XGetWindowProper-
ty to retrieve P and issue the appropriate local calls to set the projection matrix for their respective
GL contexts.
For single-buffered graphics, the client processes ignore native expose events, but chose to except
expose events sent as a cZient message. When the server process then chooses to redraw the window
or receives an expose event from the window manager, it clears the shared window, then issues an
XSendEvent with the core event type being an expose. The client processes receive this event and
redraw everything requested within their sub-domain. The X Protocol does not specify that selected
events be propagated to its clients in any certain order, therefore the “fizu-expose” event is required
to prevent any client from rendering into the shared window before it is cleared.
Double-buffered graphics is a bit more complex, but only slightly. The process is similar to single-
buffering expect that the client processes are rendering into a back buffer which must be swapped
with the front buffer when all the clients are finished drawing. But, how does the server process
know when everyone is finished drawing? One solution is that if the sewer process is aware of how
many clients are participating in the rendering, then each client can send a client event after the ren-
dering is complete. When all the clients have responded, then the server process am swap the front
and back buffers. Another perhaps more formal solution is to use the X Synchronization Exten-
sion[8.], version 2.0 for X11R5, or version 3.0 for XllR6.

Comparison to the Method of Extracts
In a nutshell, an extruct can be characterized as a data structure containing geometric information.
An extract is therefore descriptive, rather then procedural(see the Introduction), and represents a
vastly different programming paradigm to the graphics programmer point-of-view. Logistically,
however, an extract is analogous to a dispZay list is the sense that both contain geometric information,
and both can be used to represent graphic objects.
A distributed system using extracts might look like the following figure

CPU 1

PVM

CPU 0

... ,+.-d-l Server ~roces ’s

Client Process

Figure 2. Architecture of a Simulatioflisualization System using extracts

5

with perhaps the most notable feature being that the solver and visualization process share a single
run-time image of the message passing interface6, and that only the server process renders to
OpenGL.
Table 1 illustrates the division of labor for the client and server processes for each of the two models.

function Client Process Server Process OpenGL

Extracts

Remote Renderinn

Table 1. Comparison of division of labor for the Method of Extracts and Remote Rendering

Clearly, Table 1 illustrates that the bulk of the burden for visualization using extructs lies within the
end-user applications. What then would be the advantages of using extracts over remote rendering?
An extract is created, managed, and transported at the user level within both the client processes as
well as the server process. This gives a great deal of flexibility in how the extract can be man-
aged(for example, it can be saved to file). There is no user-supported method in OpenGL for acces-
sing the world coordinate vertex information in the display list.

The amount of data physically transported over the network for each method will be similar. B 0th
are required to move vertex, normal, and other geometric data in floating point 32 and @-bit format.
Care must be exercised for the Method of Extracts if heterogeneous platforms are used to insure data
consistency of the floating point format. OpenGL provides that support transparently to the user
by using a network neutral floating point format.
As is almost always the case, the chose of which method is best depends on the application. If the
primary motivation is to perform visualization and there is no need to retain the graphics in a polygo-
nal format, then distributed rendering might be appropriate for your application. If the application
performs post-processing of the graphics information or if retention of the world space polygonal
data is required, then the Method of Extracts might be appropriate. Another option would be to use
distributed rendering combined with a user-level display list which could be exchanged with the
6. Visual3 uses IRIX threads (sprm) and theEfore the solver process and visualization process inherently
share an address space.

6

server process either via a Property or via the ICCCM[9.] mechanism in X Windows. This tech-
nique is analogous to combining distributed rendering with the Method of Extracts.

Results
The modified version of NPARC[lo.] with distributed visualization was applied to a 4 block turbine
engine confisuration as shown in Figure 2. This problem was descretized into 4 unequal sized com-
putational blocks(Figure 3) traversing the domain in the streamwise direction, and was run on 4 SGI
Indigo’s running under RIX 5.0.1. A pressure plot of the resulting computation is shown in Figure
4. along a vertical plane for 6 chronological time frames taken during the resulting simulation. This
solution was compared with the solution run with a single processor. The convergence within each
block(Figure 5) was observed to be identical with the solution run in parallel indicating that decom-
position did not negatively impact total run times. The single block case was run without visualiza-
tion enabled indicating that the blocking within the solver process had little or no impact on the effi-
ciency of the parallel environment.
The fundamental purpose of the current work was to understand the mechanisms and practical issues
of using distributed visualization in a parallel environment for large scale simulations. The results
are encouraging and are summarized in the following list:

1. Large scale cm> calculation with real-time non-obtrusive display of 3D
field data is practical if the amount of requested data within each block is
held to a reasonable level. It is important that the resources for visualiza-
tion remain small compared with the simulation itself, otherwise it may
be better to use the CPU for the simulation and use post-processing.

2. The ability to perform distributed rendering using OpenGL requires no
modification to either the GLX extension or OpenGL. This capability was
something SGI had in mind with the current design of the library.

3. Conceptually, remote rendering and the method of extracts offer no advan-
tage over the other in terms of minimizing network bandwidth. Any ad-
vantages one method holds over the other will be application dependent.

Future
Many visual paradigms are fully scalable in the sense that work performed withi6each domain is
totally independent of the other blocks(i.e. iso-surface construction, vector plots, etc). However,
some tasks require cooperation between blocks, such as particle trajectory tracing. This brings in
issues such as the scalability of the process, and how to exchange trajectory coordinates as particles
migrate between domains. Any future work in parallel visualization must consider such issues.
Work will continue on building an integrated computational environment around the NPARC Navi-
er-Stokes solver. The environment will provide the user the following capabilities:

1. Set and edit boundary and run-time parameters using a dynamic 3d graph-
ics screen

2. View the computational grid
3. Submit the program and monitor the performance of the Parallel environ-

ment
4. Provide the ability to monitor the field solution in real-time as the field

solution progresses using iso-surface, contour, vector plots, and others.

7

5. Stop the simulation, change parameters, then reset or resume processing.
6. The environment will support check-pointing and fault tolerance.

Longer term, if funding allows, support will be added for automated block decomposition to match
the number of processors in the parallel processor. Ideally, integration with a grid generator would
complete the tool-set needed for a complete computational environment.

References
[l.]. A. Globus, “A Software Model for Visualization of Time-Dependent 3-D Computational
muid Dynamic Results,” NASA Ames Research Center, NAS Systems Division, Applied Research
Branch technical report RNR-92-031, November 1992.

[2.] G. Bancroft, E Merritt, T. Plessel, P. Kelaita, R. McCabe, and A. Globus. “FAST A Multi-Pro-
cessing Environment for Visualization of cm>,” Proceedings Visualization ’90, IEEE Computer
Society, San Franciso(l990).

[3.] P.G. Buning, J.L. Steger, “Graphics andmow Visualization in ComputationalFluid Dynamics,”
AIAA-85-15O7-CP9 AIAA 7th Computational Ruid Dynamics Conference, 15-17 July 1985, Cin-
cinnati, OH.

[4.] CORBA, see ftp://omg.org:/pub.
[5.] NPARC, see http://info.arnold.af.mil/nparc/Solver-info.html#document.
[6.] P W 3 , see http://www.netlib.org/pvm3/book/pvm-book.htm1.
[7.] OpenGL Reference Manual, Addison-Wesly Publishing Company, ISBN 0-201-63276-4,
First Edition November 1992.

[8 .] X Synchonkation Extension, see ftp://ftp.x.org)pub/DOCS
[9.] R. Scheifler, James Getty, X Window Sys tem, Third Edition, Digital Press, ISBN

[10.1 M.L. Stokes and D.H. Huddleston, “PANARC: Parallelized NPARC with 3D Real-Time Dis-
tributed Visualization,” to be presented at the AIAA Joint Propulsion Conference, July 10-12, San
Diego, California. - -
[11 .I MPI, see http://www.erc.msstate.edu/mpi/#basic.

1-55558-088-2,1992.

8

